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Abstract

Non-linear effects in free large amplitude oscillations of a shallow catenary are analyzed by representing
the motion in terms of the well-known linear eigenmodes. The motion is comprised of a fundamental
frequency and its harmonics. For each harmonic, including the fundamental, the mode shape is synthesized
from the linear eigenmodes. The equation of motion is then cast as a non-linear eigenproblem to determine
the fundamental frequency and the amplitudes of the contributory linear eigenmodes at each harmonic.
Numerical results confirm the previously reported shift of the fundamental frequency due to non-linear
effects as amplitude increases. The shift is found to have both tension- and non-tension-dependent
components. For given structural assumptions, there may be different solutions to the non-linear equation
of motion, differing significantly in mode shape and waveform.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Galloping is a low-frequency wind-induced vibration of overhead electrical lines caused by
aeroelastic instability when the cables become coated with ice. The motion is predominantly in the
vertical plane. In most cases, the galloping encompasses a series of spans which interact through
swinging of suspension insulators at supporting towers, but it also occurs in single ‘‘deadended’’
spans supported rigidly at both ends.
The vibration takes the form approximately of free eigenmodes of the single span or of the

multispan section, that is, those that exist in the absence of wind and damping. These modes have
been determined from the linearized equations of motion [1–4]. However, the conditions that
attend actual galloping can sometimes exceed the range where non-linear effects can be ignored.
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There are several sources of non-linearity in natural galloping. One is the fact that the
aerodynamic coefficients involved in galloping are functions of angle of attack within the range
encountered in the field. This area has been explored extensively, beginning with Den Hartog’s
pioneering paper in 1932 [5]. A recent contribution is that of Yu et al. [6]. Another source is
kinematic. The effective longitudinal stiffness of suspension insulator supports increases as the
longitudinal displacement increases, an area currently under investigation by Havard [7].
A third source of non-linearity, and the subject of this paper, is the modulation of cable tension

by the galloping motion. This modulation is inherent to certain of the modes of oscillation that
are found in natural galloping quite independent of aerodynamic and kinematic effects. Its effects
are difficult to analyze. They are most accessible through study of the free oscillation of a single
rigidly supported span. Although the term ‘‘galloping’’ applies strictly only to wind excited
motions, it is for convenience applied in what follows to the free oscillations under study here.
This problem has been addressed previously. The single-span case has been analyzed by

Hagedorn and Sch.afer [8] and Luongo et al. [9], and Rienstra has dealt with both single and
multispan cases [10]. Perturbation methods were employed.
This paper describes an approach to the free oscillation problem in which the non-linear

behavior is cast as a non-linear eigenproblem. An eigenvalue approach is suggested by the finding
of previous investigators that the frequency of galloping becomes unknown when non-linear
effects are introduced. The approach makes it feasible to represent the motion by a linear
combination of eigenmodes, in this case the eigenmodes of the linear problem. High accuracy is
possible by including many modes in the sum. The analysis focuses on the single-span case, and
addresses only the symmetric modes, those having odd numbers of loops in the span, since non-
linear effects are most significant there.
In the approach described here, motion of the span takes place at a certain fundamental circular

frequency og and its harmonics rog (r ¼ 1; 2; 3;y). At each harmonic, the shape of the cable is a
combination of the eigenmodes of the linearized problem. Non-linear effects couple the various
eigenmodes at the various harmonics to one another. These couplings are expressed in terms of
the generalized forces, generalized masses and frequency offsets involved. The couplings are
assembled in a non-linear stiffness matrix which, together with the corresponding matrices for the
linear problem, form the non-linear equation of motion.

2. Analysis

Analysis is simplified by choosing the co-ordinate system shown in Fig. 1. The catenary is
assumed to be shallow enough that it can be approximated by a circular arc of curvature s; and
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Fig. 1. Co-ordinate system.
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the component of gravity normal to the arc is assumed to be essentially the same as gravity itself.
Let the cable tension be T ; its mass m; and the instantaneous displacement of the cable be
zðs; tÞ ¼ yðsÞ cosot: With these assumptions, the equation of motion becomes [4]

�mg � m
@2z

@t2
þ

@

@s
T
@z

@s

� �
þ Ts ¼ 0: ð1Þ

Let the tension be comprised of constant and variable components: T ¼ Tg þ z; where zðs; tÞ ¼
tðsÞ cosot: This leads to

�mg � m
@2z

@t2
þ

@

@s
Tg þ z
� �@z

@s

� �
þ Tg þ z
� �

s ¼ 0: ð2Þ

The weight of the cable mg is supported by the tension curvature product Tgs; so those terms
cancel. Now, in practical spans, tension waves travel at about 50 times the speed of transverse
waves. Thus, although z varies sinusoidally with time, it can be taken as constant over the span.
Then, @z=@s ¼ 0; and the equation of motion becomes

�m
@2z

@t2
þ Tg

@2z

@s2
þ z

@2z

@s2
þ zs ¼ 0: ð3Þ

The third term is the source of non-linearity since both z and z are variables. However, since it is
of second order, the term can be neglected when motion is small. What remains is the linearized
equation of motion.

2.1. Linear eigenmodes

Solutions to the linear problem take the form [2]

y ¼ u cos l
s

L
� cos

l
2

� �
; ð4Þ

where l is a root of

tan
l
2
¼

l
2

1�
l2

d

� �
ð5Þ

with

d ¼
s2L2EA

T
; l ¼

oL

c
; c ¼

ffiffiffiffi
T

m

s
; ð6Þ

d being the catenary elasticity parameter, small values corresponding generally to shallow sags
and large values to deep sags. If the excess of arc length of the span over secant span length is
expressed as strain ec; and the elastic strain due to T is e0; then d ¼ ec=24e0:
For every value of d; Eq. (5) yields an infinite series of values for the frequency parameter l: The

first four of these eigenvalues are shown in Fig. 2. Each l determines an eigenmode via Eq. (4).
The eigenmodes for each d are orthogonal.
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2.2. Assumed solution for non-linear problem

If oscillation takes place at circular frequency og; variations in both z and z will occur at that
frequency. When the variations are large enough that the non-linear third term in Eq. (3) becomes
significant, that term will contain the product cosogt cosogt ¼ 1

2
ð1þ cos 2ogtÞ: Thus, that term

contributes a steady force to the equation of motion, as well as one at frequency 2og: To the
extent that the cable responds to the force at 2og; additional elements will be appended to the
non-linear term involving cosogt cos 2ogt and cos 2ogt cos 2ogt; and resulting in forces at og; 3og

and 4og: Cable response to those forces will generate more harmonics of og; evidently without
limit. It is apparent that the cable’s motion may be considered to have components at og and all
of its harmonics.
The (non-linear) mode shape and amplitude for each harmonic need to be determined. Since the

linear eigenmodes are orthogonal, any non-linear mode shape can be synthesized from some
combination of them. Therefore, a solution is assumed of the form

z ¼
XN
r¼1

XN
n¼1

ur;n cos ln
s

L
� cos

ln

2

� �
cos rogt: ð7Þ

This representation is similar to that of Rienstra [10], who used nl1 to generate the component
mode shapes from Eq. (5), rather than the ln roots of Eq. (5). Solution (7) may be represented as a
vector of amplitudes:

/ur;nS ¼ u1;1u1;2u1;3yu2;1u2;2u2;3yu3;1u3;2u3;3y

 �T

: ð8Þ

However, it is not feasible in practice to deal with doubly infinite vectors, so in what follows it
should be understood that the above summations are carried only to some upper index h; and the
notation

u r�1ð Þ�hþn ¼ ur;n ð9Þ

is adopted.
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It will be convenient to normalize u against the sag of the catenary. Normalized amplitudes are
defined by

Ur;n ¼
ur;n

Dg

: ð10Þ

For shallow catenaries,

DEsL2=8: ð11Þ

Note that, among other things, non-linear effects induce changes in static tension T and sag D:
At-rest conditions are distinguished by subscript c (calm) and those during galloping by the
subscript g: Thus, definition (10) employs the sag as modified by non-linear effects.

2.3. Dynamic tensions

Tension variations t are caused by variations in the arc length of the cable as it is distorted by
the assumed eigenmodes. These variations have linear and non-linear components, e1 and e2
respectively. The linear component is associated with the interaction of displacement y with the
catenary curvature s: It can be demonstrated from Fig. 1 that the average strain of the cable due
directly to amplitude yðsÞ is

e1ðsÞ ¼ �
1

L

Z L=2

�L=2
syðsÞ ds: ð12Þ

Using Eq. (4), the strain from linear eigenmode n at harmonic r is

e1r;n ¼ �
s
L

Z L=2

�L=2
ur;n cos ln

s

L
� cos

ln

2

� �
ds ¼ �sur;n

2

ln

sin
ln

2
� cos

ln

2

� �
: ð13Þ

Then from Eqs. (5), (6), (10) and (11) one obtains

e1r;n ¼
s
d

ur;nl
2
n cos

ln

2
¼

sDg

d
Ur;nl

2
n cos

ln

2
¼
1

8

Tg

EA
Ur;nl

2
n cos

ln

2
: ð14Þ

The total strain at harmonic r is

e1r ¼
1

8

Tg

EA

Xh

n¼1

Ur;nl
2
n cos

ln

2
: ð15Þ

Defining the static component of strain as
e0 ¼ Tg=EA ð16Þ

results in

e1r ¼
e0
8

Xh

n¼1

Ur;nl
2
n cos

ln

2
: ð17Þ

The non-linear component of cable strain is associated with its slope with respect to the
catenary and corresponds to the strain of the deflected shape in vibration of a taut string. This
strain is given by

e2ðs; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

dz

ds

� �2
s

� 1E
1

2

dz

ds

� �2

: ð18Þ
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Using Eq. (7), the average of this strain over the span due to motion at harmonic q becomes

e2qðtÞ ¼ cos2 qogt
1

2L

Z L=2

�L=2

XN
n¼1

uq;n
ln

L
sin ln

s

L

 !2

ds ð19Þ

¼ cos2 qogt
XN
n¼1

u2q;n
l2n
4L2

1�
sin ln

ln

� �
: ð20Þ

Then from Eqs. (10), (11), (16) and (6),

e2qðtÞ ¼
d
512

e0ð1� cos 2qogtÞ
XN
n¼1

U2
q;nl

2
n 1�

sin ln

ln

� �
:

Thus, there is a steady component of strain

e2s ¼
d
512

e0
XN
q¼1

XN
n¼1

U2
q;nl

2
n 1�

sin ln

ln

� �
; ð21Þ

and a dynamic component

e2q ¼ cos 2qogt
d
512

e0
XN
n¼1

U2
q;nl

2
n 1�

sin ln

ln

� �
; ð22Þ

which exists only at even harmonics of the galloping frequency. The total dynamic strain at
harmonic r is

er ¼ e1r þ e2r=2; ð23Þ

with r=2 confined to integer values. The associated tension variation is

zp ¼ tp cos pogt ¼ EAep: ð24Þ

2.4. Distributed force due to non-linear term

The force in Eq. (3) due to non-linearity arises from the interaction of dynamic tension
variations with dynamic curvature of the cable. Those variations and curvatures are assumed to
exist at all harmonics of og up to some level h. It will now be necessary to keep track of the
various harmonics of these several variables. To do that, let p be the harmonic of og associated
with tension variation, q the harmonic of og associated with curvature variation, and r the
harmonic of og associated with the resulting force.
The interactions take the form tp cos pogt � y00q cos qogt; in which, from Eqs. (4), (10) and (11),

y00
q ¼

Xh

n¼1

y00q;n ¼ �
Xh

n¼1

uq;n
l2n
L2

cos ln
s

L
¼ �

s
8

Xh

n¼1

Uq;nl
2
n cos ln

s

L
: ð25Þ
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y00q is the net dynamic curvature at harmonic q from all the linear eigenmodes. Then the distributed
force from tp and y00

q can be written as

Prðs; tÞ ¼ �cos pogt cos qogt
sEA

8
ep

Xh

n¼1

Uq;nl
2
n cos l

s

L
: ð26Þ

2.5. Generalized forces

The generalized force from harmonic r on mode m is defined as

Fr;m ¼
Z L=2

�L=2
Prðs; tÞjmðsÞ ds; ð27Þ

where the mode shape for mode m; from Eq. (4), is

jmðsÞ ¼ cos lm

s

L
� cos

lm

2
: ð28Þ

Thus,

Fr;m ¼ � cos pogt cos qogt
sEA

8
ep

Xh

n¼1

Uq;n

Z L=2

�L=2
l2n cos

lns

L
cos

lms

L
� cos

lm

2

� �
ds

" #

¼ � cos pogt cos qogt
sEAL

8
ep

Xh

n¼1

Uq;nlmln
sinðlm � lnÞ=2

lm � ln

�
sinðlm þ lnÞ=2

lm þ ln

� �
: ð29Þ

Define

Hm;n ¼ lmln

sinðlm � lnÞ=2
lm � ln

�
sinðlm þ lnÞ=2

lm þ ln

: ð30Þ

Then, using Eqs. (16) and (30), one has

Fr;m ¼ �cos pogt cos qogt
sTgL

8

ep

e0

Xh

n¼1

Uq;nHm;n: ð31Þ

2.6. Inter-harmonic couplings

Regarding Eq. (31), note that

cos pogt cos qogt ¼
cosðp � qÞogt þ cosðp þ qÞogt

2
: ð32Þ

Thus, generalized forces at harmonic r can result from only certain combinations of p and q;
described by r ¼ p � q and r ¼ p þ q: Since cosðxÞ ¼ cosð�xÞ; the first of these can be written as
r ¼ jp � qj: The two relations can be rewritten as p ¼ jr � qj and p ¼ r þ q: Then, summing over
all the combinations of p and q that can produce harmonic r; Eq. (31) becomes

Fr;m ¼ �
sTgL

8
cos rogt

Xh

q¼1

Gr;q

Xh

n¼1

Uq;n � Hm;n

� �" #
; ð33Þ
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in which

Gr;q ¼
ejr�qj þ erþq

2e0
: ð34Þ

2.7. Static force due to non-linearity

Non-linear effects influence the static position of the catenary. First, when dynamic tension and
dynamic curvature are at the same harmonic, so that p ¼ q; Eq. (26) becomes

Prðs; tÞ ¼ �
1þ cos 2qogt

2

sEA

8
eq

Xh

n¼1

Uq;nl
2
n cos l

s

L
: ð35Þ

The effect of the time-dependent part here is covered in Eq. (33). There remains a static force from
each harmonic:

SqðsÞ ¼ �
sEA

16
eq

Xh

n¼1

Uq;nl
2
n cos l

s

L
: ð36Þ

The total from all harmonics is

SðsÞ ¼ �
sEA

16

Xh

q¼1

eq

Xh

n¼1

Uq;nl
2
n cos l

s

L
: ð37Þ

This force distorts the catenary in two ways. First, its average %S over the span augments the Tgs
term in Eq. (2):

%S ¼ �
sEA

16

Xh

q¼1

eq

Xh

n¼1

Uq;nl
2
n

1

L

Z L=2

�L=2
cos ln

s

L
ds ¼ �

sEA

8

Xh

q¼1

eq

Xh

n¼1

Uq;nln sin
ln

2
: ð38Þ

It is an internal force, like Tgs; so it shares in supporting the cable weight mg:
The second component of static force arises from e2s (see Eq. (21)). This causes an increment in

tension

t2 ¼ EAe2s: ð39Þ

That increment applies upward pressure on the catenary in the amount st2:
The sum of %S and st2 accounts for the difference between Tg and Tc referred to earlier. Its effect

upon tension, sag and average curvature s is the same as obtained by applying %S þ st2 as a
negative increment to mg: The change in tension DT=Tg may be found as a root of

1þ
DT

Tg

� �2

1þ
24

d
DT

Tg

� �
� 1�

%S þ st2
mg � %S � st2

� �
¼ 0: ð40Þ

Note that DT is the change from Tc to Tg: The various relations above can only be evaluated
when the eigenvalues ln during galloping are known. Thus, d, on which they depend, and
therefore T in Eq. (6) must be those that exist during galloping. This is somewhat inconvenient,
since it is usually the at-rest value Tc that is directly available. This necessitates assuming several
trial values of Tg to discover the one that leads back to Tc via Tc ¼ Tg � DT :
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The change in average curvature Ds can be calculated from

%S ¼ DðsTÞ ¼ ðsg þ DsÞðTg þ DTÞ � sgTg: ð41Þ

Then sc ¼ sg � Ds: At rest and during galloping, sags can be calculated from sc and sg.
Static force SðsÞ also distorts the catenary locally, making it meander about the arc defined by

sg: The deviations in curvature due to this meandering interact with the dynamic tension
components tr to produce dynamic forces at frequency rog: The deviation in static curvature is
given by

SðsÞ � %S

Tg

¼ �
sEA

16Tg

Xh

q¼1

eq

Xh

n¼1

Uq;nl
2
n cos ln

s

L
�

2

ln

sin
ln

2

� �
: ð42Þ

The resulting force distribution at harmonic r is

�EAer

sEA

16Tg

Xh

q¼1

eq

Xh

n¼1

Uq;nl
2
n cos ln

s

L
�

2

ln

sin
ln

2

� �
: ð43Þ

It is applied at each of the eigenmodes m in accordance with Eq. (27), resulting in the generalized
force

Nr;m ¼ �er

sðEAÞ2

16Tg

Xh

q¼1

eq

Xh

n¼1

Uq;nl
2
n

Z L=2

�L=2
cos ln

s

L
�

2

ln

sin
ln

2

� �
cos lm

s

L
� cos

lm

2

� �
ds: ð44Þ

The integral reduces to

L
sinðlm � lnÞ=2

lm � ln

þ
sinðlm þ lnÞ=2

lm þ ln

�
4

lmln

sin
lm

2
sin

ln

2

� �
: ð45Þ

Define

Jm;n ¼
l2n
2

sinðlm � lnÞ=2
lm � ln

þ
sinðlm þ lnÞ=2

lm þ ln

�
4

lmln

sin
lm

2
sin

ln

2

� �
: ð46Þ

Then, with Eq. (16),

Nr;m ¼ �
sTgL

8e20
er

Xh

q¼1

eq

Xh

n¼1

Uq;nJm;n: ð47Þ

2.8. Generalized mass and stiffness

The generalized mass for any symmetric eigenmode m is

Mm ¼ m
Z L=2

�L=2
cos

oms

c
� cos

omL

2c

� �2

ds ¼ mL �
3

2

1

lm

sin lm þ
1

2
þ cos2

lm

2

� �
: ð48Þ
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Generalized stiffness Km may be found from Mm and the eigenfrequency of the mode. From
Eq. (6) one gets

lm ¼
omL

cg

; om ¼
cglm

L
¼

ffiffiffiffiffiffiffiffi
Km

Mm

r
; Km ¼ Mm

cglm

L

� �2

: ð49Þ

2.9. Equations of motion in generalized co-ordinates

But for its non-linear term, Eq. (3) can be expressed in generalized co-ordinates for each
eigenmode as

ðMmo2
m � KmÞum cosomt ¼ 0: ð50Þ

The only disturbance to this equilibrium, other than that of non-linearity, arises if the vibration
frequency rog differs from the eigenfrequency om; and the only disturbed term is the first since
only it is frequency sensitive. The disturbance amounts to

ðr2o2
g � o2

mÞMmur;m cos rogt: ð51Þ

With manipulation this becomes

�
sTgL

8

l2m
r2

� l20

� �
r2QmUr;m cos rogt; ð52Þ

in which

Qm ¼ �
3

2

1

lm

sin lm þ
1

2
þ cos2

lm

2
: ð53Þ

The generalized forces on mode m at harmonic r, given in Eqs. (33) and (47), must balance
disturbance (52). This leads to

�
sTgL

8

l2m
r2

� l20

� �
r2QmUr;m þ

sTgL

8

Xh

q¼1

Gr;q

Xh

n¼1

ðUq;n � Hm;nÞ

" #

þ
sTgL

8

er

e0

Xh

q¼1

eq

e0

Xh

n¼1

Uq;nJm;n ¼ 0 ð54Þ

and

l2m
r2

� l20

� �
Ur;m �

Xh

q¼1

Xh

n¼1

Gr;qHm;n þ ðereq=e20ÞJm;n

r2Qm

� Uq;n: ð55Þ

There is one such equation for each mode m at each harmonic r:
Now, the indices for the vectors Ur;m and Uq;n can be expressed as ðr � 1Þh þ m and ðq � 1Þh þ n;

respectively. Define a matrix B such that

Bðr�1Þhþm;ðq�1Þhþn ¼
Gr;qHm;n þ ðereq=e20ÞJm;n

r2Qm

: ð56Þ
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Then Eq. (55) can be expressed in matrix form

diag
l2m
r2

� l20

� �
� Ur;m � B � Uq;n ¼ 0: ð57Þ

Since the first matrix is diagonal one has Ur;m ¼ Uq;n; and Eq. (57) can be written as

diag
l2n
q2

� l20

� �
� B

� �
� Uq;n ¼ 0 or diag

l2m
r2

� l20

� �
� B

� �
� Ur;m ¼ 0 ð58Þ

2.10. Solution procedure

Eq. (58) is non-linear because the vector Ur;m enters into the calculation of B through Eqs. (17),
(22) and (34). Consequently, it cannot be solved as an eigenproblem until Ur;m is already known or
at least assumed. The procedure employed here is to assume Ur;m; calculate B, solve Eq. (58), and
then choose one of the resulting eigenvectors as the next trial Ur;m: This cycle is repeated until the
solution eigenvector approaches a constant value. The process can be laborious, and this is a
disadvantage of the eigenmode approach. Note that perturbation methods often permit explicit
solution. On the other hand, the eigenmode approach yields benefits in terms of insights into the
non-linearity mechanisms, and can permit improved accuracy in describing the mode shapes and
motions at amplitudes where the perturbation parameter can no longer be considered small.
The iteration process is complicated by the fact that, at each step, the eigenanalysis produces a

multitude of eigenvectors inviting exploration. If the numbers of eigenmodes and harmonics are
both h; there are h2 eigenvectors. It is evident from calculations that, at very low galloping
amplitudes, h of these are associated with the linear eigenvalues ln; and the rest are subharmonics
of them. The subharmonics are thought to be spurious. In what follows, attention is focused on
the eigenmode associated with l1, the pseudo-fundamental, since that is the mode where non-
linear effects are most pronounced.
Table 1 shows a typical set of calculation results. Note that only two independent variables

enter into the calculations: dg and the galloping amplitude. In this table and elsewhere below,
galloping amplitude is specified in terms of the amplitude/sag at midspan (s ¼ 0) for the
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Table 1

Eigenmode amplitudes Ur;m (dg ¼ 66; y1;1ð0Þ=D ¼ 0:3)

Harmonic r er=e0 Mode m

1 2 3 4 5 6

1 �1.0143 0.1624 �0.0266 �0.0326 �0.0036 0.0000 0.0005

2 0.1785 0.0093 0.0211 0.0503 0.0043 �0.0001 �0.0009
3 �0.0361 �0.0011 0.0033 0.0358 �0.0058 0.0014 0.0001

4 0.0850 �0.0004 0.0007 0.0051 �0.0050 �0.0016 0.0009

5 0.0012 �0.0003 0.0002 0.0007 �0.0011 �0.0016 �0.0011
6 0.0454 �0.0001 0.0002 �0.0002 �0.0001 �0.0005 �0.0010

lm 7.404 10.115 15.799 22.020 28.287 34.564
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fundamental harmonic of the first eigenmode, l1, as determined from Eq. (4), that is

y1;1ð0Þ
D

¼ U1;1 � 1� cos
l1
2

� �
: ð59Þ

In Table 1, dg ¼ 66: The body of the table displays the normalized eigenmode amplitudes Ur;m:
er=e0 is shown in the second column, permitting calculation of tension variations at the various
harmonics via Eqs. (16) and (24). The linear eigenvalues lm are displayed at the bottom. The most
important components of Ur;m are shown in bold. The fact that the components at the higher
modes and higher harmonics are small indicates that six of each is quite adequate to represent the
motion.
For the example of Table 1, the static tension increment was found from Eq. (40) to be

DT=Tg ¼ 0:2581: The change in curvature Ds was then found from Eq. (41). When those changes
were applied in Eq. (6), it was found that at rest dc ¼ 46:85:
Now, the fundamental eigenvalue that corresponds via Eq. (5) to dc ¼ 46:85 is lc ¼ 7:404: The

solution to Eq. (58) was l0 ¼ 7:293: Thus, from Eq. (6),

lc ¼
ocL

cc

¼ 7:404; l0 ¼
ogL

cg

¼ 7:293: ð60Þ

oc is the circular frequency that would be expected ignoring non-linear effects and can be
calculated from at-rest conditions. og is the circular frequency that actually occurs. Their specific
values depend upon the physical parameters of the span, but their ratio can be determined from
Eq. (60). However, it is necessary to take into account the different tensions as they enter into cg

and cc through Eq. (6). The result turns out to be og=oc ¼ 0:9584:

3. Discussion

This section describes results of numerical studies utilizing the methods of the preceding section.
Although the studies could not be exhaustive, it is felt that they reveal the major effects of non-
linearity for the case considered: the symmetric pseudo-fundamental mode in a single
‘‘deadended’’ span.

3.1. Internal resonances

When the eigenfrequency of one of the higher modes is exactly twice the galloping frequency,
the higher mode will respond resonantly to the generalized force (31) arising from the
fundamental mode. Resonances at higher multiples of the galloping frequency may also occur.
These resonances are expressed by ln ¼ r � l0; where r is an integer. At very low amplitudes,
l0El1 and the resonances are easily identified by examining the ratios l2=l1, l=l1, etc., as
functions of d (see Fig. 2). There turn out to be four significant resonances:

l2=l1 ¼ 2 at d ¼ 16:15; l3=l1 ¼ 2 at d ¼ 85:9 and 289; l4=l1 ¼ 3 at d ¼ 64:1:

The first three are evident in Fig. 3, which shows the amplitudes U1;1; U2;2 and U2;3 as functions of
dc; based on the procedures of the preceding section. Note that the absolute values are plotted.
Two of the branches, identified with (�), are actually negative. While the third resonance was
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evidently present, it defied exploration. That may be due to limitations of the method or inherent
instability of solutions to Eq. (58) in that dc range. The fourth internal resonance becomes evident
only at larger galloping amplitudes.
Fig. 3 brings out two effects of non-linearity. One is a shift in the frequencies of the internal

resonances as the amplitudes of the resonant modes increase. These shifts reflect a softening of the
spring constants that determine the resonances. The other effect is occurrence of multiple
solutions over some ranges of dc:

3.2. Frequency shifts

The example of Table 1 yielded a shift in the pseudo-fundamental galloping frequency of
og=oc ¼ 0:9584: This shift actually has three components. Two are associated with the change in
static tension DT that creates differences through Eq. (6) between dc and dg and between the wave
velocities cc and cg. Each of dc and dg points via Eq. (5) to a set of values of ln; the first set
pertaining to absence of non-linear effects and the second taking them into account. The
fundamental roots l1 from each set may be used with corresponding values cc and cg to calculate
oc and og: However, the latter value is not quite correct. The third frequency shift component is
the difference between the during-galloping value of l1 and l0: The latter is the solution to
Eq. (58), and it, not l1; determines og:
The difference between l0 and l1 during galloping deserves some comment. It arises basically

from the circumstance that, were l0 ¼ l1; tension variations at the second harmonic p ¼ 2 would
interact with curvature variations at q ¼ 1 through Eq. (32) to produce a generalized force Fr;m at
harmonic r ¼ 1 on the mode 1. There would be exact resonance between Fr;m and mode 1
eigenfrequency. Infinite resonant amplification would occur. Note that the tension variations at
p ¼ 2 are a product of mode 1’s non-linear effects. What results then is an apparent feedback loop
with infinite gain. Such an absurdity in a conservative system is avoided by casting it as a multi-
degree-of-freedom system interconnected with an array of (non-linear) springs. The system
eigenfrequencies are then dependent variables that necessarily solve the equations of motion
properly.
The magnitudes of typical frequency shift components are illustrated in Figs. 5 and 6. The

figures pertain to basic galloping amplitude y1;1ð0Þ=D ¼ 0:3: The most significant modal
amplitudes for that case are shown in Fig. 4. Note, in that figure, that the abscissa is dg (during
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Fig. 3. Modal amplitudes for y1;1ð0Þ=D ¼ 0:05: Triangles: U1;1; diamonds: U2;2; squares: U2;3:
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galloping) rather than at-rest dc as used in Fig. 3. At large amplitudes, using dc scrambles the
curves confusingly.
The fractional shift in wave velocity is approximately half of DT=T shown in Fig. 5. That shift

and l1=lc in Fig. 6 are caused by the change in static tension from Eq. (40), whereas l0=l1 is a
purely dynamic effect of non-linearity.

3.3. Multiple solutions

Fig. 7 shows the curves for U1;1;U2;2 and U2;3 from Fig. 4 plotted against at-rest dc: Although
messy, this presentation is of interest because galloping must originate from the at-rest condition.
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Fig. 4. Modal amplitudes for y1;1ð0Þ=D ¼ 0:3: Triangles: U1;1; diamonds: U2;2; squares: U2;3; circles: U3;4:

Fig. 5. Tension shifts at y1;1ð0Þ=D ¼ 0:3:

Fig. 6. Frequency shifts at y1;1ð0Þ=D ¼ 0:3: Circles: l1=lc; triangles: l0=l1:
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Increasing amplitude causes tension to change, and dg then deviates from dc: For the higher dg

range, the curves double back when plotted against dc; presenting ‘‘upper and ‘‘lower’’ branches.
It is evident that two different solutions are possible over a significant part of the range of dc:
Fig. 7 brings into register the solutions that have different dg but originate from the same dc: Both
solutions stem from the pseudo-fundamental linear eigenmode l1:
Alternative solutions at the same dc may have markedly different mode shapes. Fig. 8 shows the

mode shape of the fundamental harmonic for the two solutions at dc ¼ 36: These shapes are
defined by

Y1ðsÞ ¼
Xh

n¼1

U1;n � cos ln
s

L
� cos

ln

2

� �
: ð61Þ

The shapes shown in Fig. 8 assume Y1ð0Þ ¼ 0:3: Aerodynamic considerations would determine the
actual magnitudes of these modes.
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Fig. 7. Modal amplitudes for y1;1ð0Þ=D ¼ 0:3 versus at-rest d: Triangles: U1;1; diamonds: U2;2; squares: U2;3:

Fig. 8. Harmonic 1 mode shapes at dc ¼ 36 for y1;1ð0Þ=D ¼ 0:3: Solid: dg ¼ 36; dashed: dg ¼ 68:

Fig. 9. Midspan waveforms for the two solutions at dc ¼ 36: Solid: dg ¼ 36; dashed: dg ¼ 68:
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Alternative solutions may also have very different time-wise waveforms. For example, Fig. 9
shows midspan waveforms for the two solutions at dc ¼ 36; again with Y1ð0Þ ¼ 0:3: The distortion
for the upper branch dg ¼ 68 case is caused by significant amplitude of the U2;3 component. The
lesser fundamental amplitude results from contributions by U1;2 and U1;3:
These and other components change in amplitude as the galloping amplitude varies. Fig. 10

shows this variation in several components for the upper branch solution of Fig. 7 at dc ¼ 36: It
can be seen that U2;3 overshadows amplitude U1;1 of the fundamental harmonic at low amplitudes,
but falls to only a fraction of it at high amplitudes. Such large variations in harmonic and modal
content are a feature of these upper branch solutions, and thus can occur over a significant part of
the dc range of practical interest.
The lower solution, not shown in Fig. 10, displays negligible harmonic content at small

amplitudes, growing slowly to a modest level at higher amplitudes. Only the U2;2 component is
significant. This is characteristic of lower branch solutions over much of the range of dc: As a
general observation, the upper branch solutions are richer in modes and harmonics, Table 1 being
an example.
The range of amplitudes Y1ð0Þ covered in Fig. 10 was bounded on the high end by large tension

variations leading to slackness in the cable at some point of the galloping cycle. At the low end,
however, the solution procedure failed to find convergent solutions for Y1ð0Þo0:11: Further
exploration is needed to determine whether this solution gap persists over the entire upper branch.

4. Conclusions

Non-linear effects in free symmetric-mode galloping of a shallow catenary can feasibly be
addressed in the form of a non-linear eigenproblem. The motion can be represented in terms of the
linear eigenmodes of the span by synthesizing the non-linear mode shape at each harmonic from
the linear eigenmodes. The approach provides insight into the mechanisms involved as well as
enhanced precision in representing the motions of the span. Numerical studies using the method
confirm previous findings that non-linear effects cause shifts in the galloping frequency. The
studies separate those shifts into tension-dependent and non-tension-dependent components.
They also reveal multiple non-linear solutions for span motion for the same structural
assumptions, with the different solutions marked by significant differences in mode shape and
waveform.
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Fig. 10. Variation of modal amplitudes with galloping amplitude, dc ¼ 36: Triangles: U1;1; diamonds: U2;3; squares:
U3;3:
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Appendix A. Nomenclature

A cable cross-sectional area
B matrix of non-linear inter-harmonic and inter-modal couplings, Eq. (56)
c transverse wave velocity, Eq. (6)
D midspan sag, Eq. (11)
E elastic modulus of cable
Fr;m generalized force from harmonic r on mode m; Eq. (27)
g gravity
G harmonic coupling parameter, Eq. (34)
H modal coupling parameter, Eq. (30)
h numbers of harmonics and eigenmodes considered
J modal coupling parameter, Eq. (46)
K generalized stiffness, Eq. (49)
L span length
m; n linear eigenmode number
M generalized mass, Eq. (48)
N generalized force due to static distortion of catenary, Eq. (44)
P distributed dynamic force due to non-linear effects, Eq. (26)
Q generalized mass parameter, Eq. (53)
p; q; r harmonic multiples of galloping frequency
S distributed static force due to non-linear effects, Eq. (37)
s spanwise location along catenary
t time
T cable tension
u eigenmode amplitude, Eq. (4)
U normalized eigenmode amplitude u=D
Ua;b normalized amplitude of harmonic a, mode b

y local amplitude of galloping in plane of catenary
Y1 normalized local amplitude of harmonic 1, Eq. (61)
z local displacement of cable in plane of catenary
d catenary elasticity parameter, Eq. (6)
e a component of cable strain, Eqs. (12) and (18)
e0 static component of cable strain, Eq. (16)
z dynamic component of tension
l eigenvalue of linear galloping mode, Eq. (6)
t amplitude of dynamic component of tension
m cable unit mass
s curvature of catenary
j eigenmode shape, Eq. (28)
o circular frequency

Subscripts
c cable at rest
g cable galloping
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